
www.manaraa.com

The Uncertainty Principle in Software EngineeringHadar Ziv Debra J. RichardsonInformation and Computer ScienceUniversity of California, IrvineIrvine, CA 92697-3425USA+1.714.824.4047fziv,djrg@ics.uci.edu Ren�e Kl�oschDepartment of Distributed SystemsInstitute of Information SystemsVienna University of TechnologyVienna, Austria+43.1.58801R.Kloesch@infosys.tuwien.ac.atAbstractThis paper makes two contributions to software engi-neering research. First, we observe that uncertaintypermeates software development but is rarely capturedexplicitly in software models. We remedy this situationby presenting the Uncertainty Principle in Software En-gineering (UPSE), which states that uncertainty is in-herent and inevitable in software development processesand products. We substantiate UPSE by providing ex-amples of uncertainty in select software engineering do-mains. We present three common sources of uncertaintyin software development, namely human participation,concurrency, and problem-domainuncertainties. We ex-plore in detail uncertainty in software testing, includ-ing test planning, test enactment, error tracing, andquality estimation. Second, we present a technique formodeling uncertainty, called Bayesian belief networks,and justify its applicability to software systems. We ap-ply the Bayesian approach to a simple network of soft-ware artifacts based on an elevator control system. Wediscuss results, implications and potential bene�ts ofthe Bayesian approach. The elevator system thereforeserves as an example of applying UPSE to a particularsoftware development situation. Finally we discuss ad-ditional aspects of modeling and managing uncertaintyin software engineering in general.KeywordsSoftware principles, software testing, uncertainty mod-eling, Bayesian networksINTRODUCTIONToday's software engineer is expected to develop, main-tain and comprehend software systems of unprecedentedsize and complexity. The complexity of software sys-tems and their development processes is known to beintrinsic and essential [3]. Substantial e�orts in soft-ware engineering research attempt to improve software

quality and developer productivity in the presence ofcomplexity. We contend that attempts to alleviate soft-ware complexity are often impeded by the uncertaintypermeating virtually every aspect of software develop-ment. In subsequent sections, we provide supportingevidence for our claim. First, examples of uncertaintyin select domains of software development are presented,followed by a discussion of three common sources of un-certainty in software engineering. We then present theUncertainty Principle in Software Engineering (UPSE),followed by more detailed expositions of uncertainty insoftware testing, including test planning, test enact-ment, error tracing, and quality estimation. We de-scribe a speci�c technique for modeling and manage-ment of uncertainty, known as Bayesian belief networksor simply Bayesian nets. We demonstrate the use ofBayesian nets for a simple network of software artifactsand relations based on an elevator control system. Weconclude with a discussion of issues and concerns inuncertainty modeling, both speci�cally using Bayesiannets as well as in general.We wish to note that uncertainty abounds in many as-pects of software development, as well as in other engi-neering disciplines and in everyday situations (For un-certainty in everyday situations, see, for example, [33],pp. 460.). A detailed exposition of uncertainty in gen-eral is therefore beyond the scope of this paper. Wehope that UPSE nevertheless identi�es an opportunityfor future investigations and provides a solid founda-tion for broader discussions of uncertainty modeling insoftware engineering. We encourage the reader to con-sider occurrences and in
uences of uncertainty in herown domains of interest and expertise.Uncertainty in Software Engineering DomainsHere, we present four select domains of software engi-neering where uncertainty is evident. Later, we discussuncertainty in software testing in greater detail. Foreach domain, we include questions that arise frequentlyand indicate potential uncertainties. These questionsoften require answers of degree as opposed to binaryyea or nay. Later, we show that these questions may beaddressed by means of probability values.1

www.manaraa.com

Uncertainty in requirements analysisSoftware requirements elicitation and analysis typicallyinclude learning about the problem and problem do-main, understanding the needs of potential users, andunderstanding the constraints on the solution. Analysisand speci�cation of software requirements inevitably in-troduces uncertainties, including: Who will be the realsystem users? What are users' needs and expectations?How well is the problem domain understood? How rig-orously, accurately and su�ciently are domain under-standing and user needs and expectations captured inthe requirements speci�cation document?Uncertainty in the transition from system requirementsto design and codeSoftware development typically requires the system tobe represented at multiple levels of abstraction, in-cluding, for example, requirements analysis models, de-sign models, and source code implementations. Tran-sitioning between di�erent levels of abstraction, how-ever smooth, often introduces uncertainties, including:How well does the design model correspond to the re-quirements analysis model? How well does the imple-mentation correspond to the design? How many of thespeci�ed requirements are indeed met?Uncertainty in software re-engineeringSoftware re-engineering includes reverse engineering ofan existing system into higher-level architectural de-scriptions, followed by forward engineering of a revisedsystem implementation. Thus, in addition to forward-engineering uncertainties, software re-engineering alsoincludes the following uncertainties: How well doesavailable system documentation correspond to programsource code? How accurately do models that werereverse-engineered from program source code representdomain abstractions [14]? To what degree can originalsystem documentation be used in the reverse engineer-ing process [35]?Uncertainty in software reuseReuse of software components (for example, classes, pat-terns and frameworks of object-oriented systems) intro-duces several uncertainties, including: How to specifythe interface of a reusable component completely andsu�ciently? What is one's con�dence that an exist-ing (i.e., available for reuse) component meets one's us-age needs? Given a reusable component, how can itbe tailored to existing project constraints and assump-tions? Additional uncertainties have been identi�ed inthe composition of reusable components [25].Sources of Uncertainty in Software EngineeringUncertainty occurs in software engineering for di�erentreasons and stems from multiple sources. Three exam-ple sources of uncertainty are described below.

Uncertainty in the problem domainA software system typically includes one or more mod-els of the \real world" domain in which it operates. Thereal world, however, is full of uncertainties, and there-fore a system that models the real world inevitably re-
ects domain uncertainties. Domain uncertainties areoften only implied or simply ignored in the system's do-mainmodel. This may lead to discrepancies between thereal world and system assumptions and actions, whichmay in turn lead to risks and hazards. Also, in embed-ded systems, there are uncertainties with respect to ex-ternal software, hardware, and mechanical components.Ignoring these uncertainties may be hazardous, possi-bly even fatal 1. Uncertainty also exists in the naturaland physical sciences. According to Heisenberg's uncer-tainty principle, for instance, the presence of an observermay a�ect scienti�c observations such that absolute con-�dence in observed results is not possible.Uncertainty in the solution domainSoftware systems constitute solutions to real worldproblems. Software solutions may introduce additionaluncertainties above and beyond those attributed to theproblem domain. A known example of solution do-main uncertainty, discussed next, occurs in concurrent-program debugging. The key di�culty in debuggingconcurrent programs is due to race conditions, whichintroduce uncertainty, because erroneous program be-havior observed in one execution may not be evidentin subsequent executions [24]. Moreover, any attemptto \probe" the program for additional information, forexample by instrumenting it, may adversely a�ect theprobability of reproducing the erroneous behavior. Thisis often referred to as the \probe e�ect" [12, 13] and isclosely related to Heisenberg's uncertainty principle inthat by attempting to observe program behavior, theprobes may inadvertently a�ect the outcome of the ob-servation. Consequently, this uncertainty has been re-ferred to as \Heisenbugs" [24].Human participationThe active role played by humans in virtually everystage of the software lifecycle inevitably introduces un-certainty and unpredictability into software develop-ment. That software development is still largely human-intensive may seem trivial, yet surprisingly few methodsexist that explicitly model the inexact and uncertain na-ture of human involvement and its consequences for soft-ware processes and products. For example, rule-basedformalisms for software-process modeling, such as Mar-vel/Oz [19] and Merlin [20], represent process steps andprocess decisions as rules, but do not accommodate ex-plicit modeling of uncertainty in those rules.1Leveson and Turner [22] report on the Therac incidents, wheresoftware uncertainties were deemed impossible and therefore werenot considered by the manufacturer of a medical radiation device.

www.manaraa.com

Principles of Software EngineeringIn 1968, the NATO conference held in Garmisch, Ger-many [26] endorsed the claim that software constructionis similar to other engineering tasks and that softwaredevelopment must therefore \be practiced like an engi-neering discipline." Engineers in classical engineeringdisciplines are equipped with processes, methodologies,standards, and tools that have been evolved, tested, andproven successful. The use of standard procedures, ma-terials, and building blocks limits the degrees of free-dom and allows for engineering projects to proceed inpredictable, controllable, and manageable fashion.At the foundation of classical engineering disciplines oneoften �nds a small set of underlying principles and lawsof nature that govern the behavior of systems and guidetheir development. In the physical sciences, for instance,one �nds Newton's laws of gravity, Einstein's theory ofrelativity, Kepler's laws of planetary motion, Heisen-berg's uncertainty principle, and the laws of thermody-namics. Laws and principles of the physical world areusually discovered, not invented, by observing physicalsystems. Such principles are con�rmed and substanti-ated by scienti�c experiments that are controllable andrepeatable and whose results are highly predictable.In contrast, software systems appear unconstrained byany laws or principles. It has long been recognized,however, that software engineering would do well by astandard set of procedures, guidelines and principles. Arecent book by Davis [8] documents 201 such principles.Ghezzi et al [15] identify seven principles at the heart ofall software development activities. Brooks contributedtwo key principles to software engineering knowledge,namely \the mythical man-month" [2] and \no sliverbullet" [3].Software engineering principles should capture the na-ture and behavior of software systems and guide theirdevelopment. Such principles would help in restrictingdegrees of freedom in software development and achiev-ing degrees of predictability and repeatability similar tothose of classical engineering disciplines. We observethat in order for a principle of software engineering toexhibit relevancy and applicability similar to other en-gineering principles, it should be de�ned and presentedgenerally and abstractly, be applicable and instantiablein practice to speci�c software development situations,and be observed and substantiated repeatably and pre-dictably.One can con�rm that software-engineering principles,such as those recorded by Davis, Ghezzi, Brooks, andothers, indeed meet the three \principle criteria" de�nedabove. In this paper, we de�ne and justify UPSE andcontend that it also meets the three principle criteriaabove. We now proceed to de�ne UPSE.

THE UNCERTAINTY PRINCIPLE IN SOFT-WARE ENGINEERINGSoftware development is a complex human enterprisecarried out in problem domains and under circum-stances that are often uncertain, vague, or otherwiseincomplete. Development must progress, however, inthe presence of those uncertainties. The UncertaintyPrinciple in Software Engineering (UPSE) is thereforestated as follows:Uncertainty is inherent and inevitable in soft-ware development processes and products.UPSE is, like other principles of software engineering,a general and abstract statement about the nature ofsoftware development and is applicable throughout thedevelopment lifecycle. The principle should still, how-ever, be applied judiciously and appropriately. The nextsection describes key issues and concerns that need tobe addressed when applying UPSE.Applying UPSESoftware engineering processes and products include el-ements of human participants (e.g., designers, testers),information (e.g., design diagrams, test results), andtasks (e.g., \design an object-oriented system model,"or \execute regression test suite"). Uncertainty occursin most if not all of these elements. A software modelingactivity would therefore do well to apply UPSE by ex-plicitly modeling one or more uncertainties, taking intoaccount the issues discussed below.What is the goal of the modeling activity?A model of a software process or product is an abstrac-tion that ignores some detail. Software models are de-veloped for di�erent reasons and to meet di�erent goalsand, consequently, may include di�erent uncertainties.If, for example, the goal of software modeling is to rep-resent key system abstractions or artifact architecture,then uncertainties regarding conceptual and architec-tural decisions may need to be represented explicitly.Alternatively, if a software process is modeled to facili-tate project planning and prediction, then uncertaintiesregarding schedule and budget estimates, progress mon-itoring, and project risks may be modeled explicitly.When is uncertainty modeling relevant?Despite the generality of UPSE, uncertainty-modeling isnot necessarily meaningful or equally applicable to allaspects of a software-engineering e�ort. Consider, forexample, a requirements-change scenario where a newfeature is requested for an existing software system. Thechallenging task of accommodating the new requirementoften necessitates substantial changes to system archi-tecture and implementation, and therefore leads to un-certainties. On the other hand, a simpler, automatabletask such as creating a new release version or updating

www.manaraa.com

system con�guration information is less likely to intro-duce uncertainty 2.What notation, formalism, or approach is used for mod-eling uncertainty?Notations and techniques for modeling uncertainty,vagueness, and fuzziness, have been studied extensivelyin domains of arti�cial intelligence [33, 18]. Di�erent ap-proaches for modeling uncertainty have been advocatedbased on di�erent mathematicalmodels as well as di�er-ent assumptions about the sources and nature of uncer-tainty. A detailed exposition of current approaches touncertainty modeling is beyond the scope of this paper.Instead, we focus on a particular uncertainty modelingtechnique, called Bayesian belief networks.UNCERTAINTY IN SOFTWARE TESTINGSoftware testing has been described as \the search fordiscrepancies between what the software can do versuswhat the user or the computing environment wants itto do" [16]. We consider software testing broadly toinclude test planning, test enactment, error tracing, andquality estimation. We identify uncertainties associatedwith each activity below.Test PlanningWe identify three aspects of test planning where un-certainty is present: the artifacts under test, the testactivities planned, and the plans themselves.Software systems under test include, among others, re-quirements speci�cations, design representations, sourcecode modules, and the relationships among them. Thesesoftware artifacts are produced by requirements analy-sis, architectural design, and coding processes, respec-tively. Following UPSE, uncertainty permeates thosedevelopment processes and, consequently, the resultingsoftware artifacts. Plans to test them, therefore, willcarry these uncertainties forward.Software testing, like other development activities, ishuman intensive and thus introduces uncertainties.These uncertainties may a�ect the development e�ortand should therefore be accounted for in the test plan.In particular, many testing activities, such as test re-sult checking, are highly routine and repetitious andthus are likely to be error-prone if done manually. Thisagain introduces uncertainties.Test planning activities are carried out by humans atan early stage of development, thereby introducing un-certainties into the resulting test plan. Also, test plansare likely to re
ect uncertainties that are, as describedabove, inherent in software artifacts and activities.Test Enactment2Note, however, that automatable operations that do not re-quire human intervention are not necessarily free of uncertainties.

Test enactment includes test selection, test execution,and test result checking. Test enactment is inherentlyuncertain, since only exhaustive testing in an ideal en-vironment guarantees absolute con�dence in the testingprocess and its results. This ideal testing scenario isinfeasible for all but the most trivial software systems.Instead, multiple factors exist, discussed next, that in-troduce uncertainties to test enactment activities.Test selection is the activity of choosing a �nite set ofelements (e.g., requirements, functions, paths, data) tobe tested out of a typically in�nite number of elements.Test selection is often based on an adequacy or coveragecriterion that is met by the elements selected for testing.The fact that only a �nite subset of elements is selectedinevitably introduces a degree of uncertainty regardingwhether all defects in the system can be detected. Onecan therefore associate a probability value with a testingcriterion that represens one's belief in its ability to de-tect defects. An example of assigning con�dence valuesto path selection criteria is given below.Test execution involves actual execution of system codeon some input data. Test execution may still includeuncertainties, however, as follows: the system undertest may be executing on a host environment that isdi�erent from the target execution environment, whichin turn introduces uncertainty. In cases where the tar-get environment is simulated on the host environment,testing accuracy can only be as good as simulation accu-racy. Furthermore, observation may a�ect testing accu-racy with respect to timing, synchronization, and otherdynamic issues. Finally, test executions may not accu-rately re
ect the operational pro�les of real users or realusage scenarios.Test result checking is likely to be error-prone, inex-act, and uncertain. Test result checking is a�orded bymeans of a test oracle, that is used for validating testresults against stated speci�cations. Test oracles canbe classi�ed into �ve categories [31], listed in decreasingorder of uncertainty (or, alternatively, increasing orderof con�dence), as follows: human oracles, input/outputoracles, regression test suites, validation test suites, andspeci�cation-based oracles. Speci�cation-based oraclesinstill the highest con�dence, but still include uncer-tainty that stems fromdiscrepancies between the speci�-cation and customer's informal needs and expectations.We have modeled uncertainties in test oracles for anextended system test scenario, but space does not per-mit its inclusion in this paper. Instead, we provide twosmaller and simpler examples of modeling uncertaintyin software testing. The �rst example, described next,is in the domain of path selection criteria.Example: Path Selection Testing CriteriaHere, we add a measure of uncertainty to a previous

www.manaraa.com

result in comparison of data
ow path selection testingcriteria. In [5], the authors present a subsumption hi-erarchy that imposes a partial order on di�erent data
ow path selection criteria with respect to their abilityto provide adequate coverage of a given program. Thesubsumption relationship may be recast in terms of un-certainty or degree of con�dence, as follows: if criterionA subsumes criterion B, then one has more con�dence inthe defect-detection ability of A than that of B3. Con-�dence in the defect-detection ability of a given testingcriterion may be quanti�ed by means of a probability\belief" value between 0 and 1. This is illustrated inTable 1, which shows a plausible assignment of proba-bilistic con�dence values for a dozen path selection cri-teria from [5]. Table 1 raises some important questions,however, discussed next.Path Selection Criterion Con�dence ValueAll-Paths :65All-DU-Paths :59Ordered Context Coverage+ :61Context Coverage+ :55Reach Coverage+ :45All-Uses :45All-C-Uses/Some-P-Uses :33All-P-Uses/Some-C-Uses :33All-Defs :25All-P-Uses :2All-Edges :15All-Nodes :1Table 1: Con�dence Values for Data Flow Path Selec-tion CriteriaWhy are con�dence values relatively low?Low con�dence values imply that even a \strong" pathselection criterion does not incur high levels of con�-dence. This is because path selection does not take intoaccount, for example, data value selection. Some de-fects are only revealed by particular data values, butnot by others. Therefore, low con�dence values re
ectthe criteria's inability to guarantee defect detection.What are the constraints, if any, on the assignment ofcon�dence values?The only constraint on assigning con�dence values isthat if A subsumes B in the subsumption hierarchyof [5], then A's con�dence value should be equal to orhigher than B's. Thus, there are in�nitely many pos-sible assignments of con�dence values that preserve thepartial subsumption order of path selection criteria.3As discussed in [5], even if A subsumes B, it is still uncertainwhether A is in fact better at detecting defects, since demonstrat-ing the latter would require that empirical data be collected tosubstantiate the graph theoretic proofs of subsumption.

How are con�dence values determined?Con�dence values, such as shown in Table 1, are of-ten determined by consultation with domain experts.Other techniques exist, however, for establishing con�-dence values, including: values computed using softwarereliability or cost-estimation models; values obtainedfrom empirical, statistical, or historical data; or else val-ues acquired dynamically during software-process exe-cution. Some techniques and their implications are dis-cussed further in subsequent sections.How are con�dence values used?Con�dence values may be useful, for example, for choos-ing the most appropriate testing criterion given projectrequirements and constraints. A safety-critical system,for instance, may require that only testing criteria withcon�dence levels in the ultrahigh region be used. In con-trast, a commercial software product may may weighthe cost and duration of testing against time-to-marketconstraints. We propose that, in both cases, probabilis-tic measures of con�dence, for example, in the defect-detection abilities of testing criteria, be employed in thedecision-making process.Quality EstimationSoftware testing is instrumental in establishing qualityand high assurance in software processes and products.A key concern of software testing is \When to stop test-ing?", which is often answered by means of quality es-timation. We consider reliability testing and reliabilitygrowth modeling to be among the most mature tech-niques for software quality assessment [23] and thereforefocus on them below.Considerable work in software reliability modeling isbased on a probabilistic notion of uncertainty. A prob-abilistic model of software behavior is needed since nei-ther program testing nor formal proof of program cor-rectness can guarantee complete con�dence in the cor-rectness of a program [16]. Software reliability measuresto what degree a software system behaves as expected,thereby modeling system behavior as observed by itsusers, as opposed to static or dynamic properties of thecode itself. Examples of measures used in software re-liability include frequency of failure and mean time tofailure. Software reliability may therefore be de�nedas the probability that software faults do not cause aprogram failure during a speci�ed exposure period in aspeci�ed use environment [16].Hamlet [17] and Littlewood [23] extend existing relia-bility theory be de�ning \software dependability" as astatistical measure of software quality. Hamlet incor-porates Blum's idea of self-checking/self-correcting pro-grams [1] into reliability such that the dependability ofa program P at input X is de�ned as the con�denceprobability that P is correct (with respect to its speci-

www.manaraa.com

�cation) at X.Software reliability models not only demonstrate thatuncertainty may be measured and represented explic-itly but they can also be used to estimate future soft-ware quality. Prediction of future reliability assumesthat software systems are used with statistical regular-ity. This assumption, however, introduces uncertainty,since future users may exhibit vastly di�erent usage pat-terns. We conclude that probabilistic measures of soft-ware reliability can be used to provide initial estimatesof con�dence levels in software artifacts and relations.This is discussed in more detail in subsequent sections.Error TracingWhen a software failure is detected, the source of theerror must be found. The error may have been intro-duced at an early stage of development, such as require-ments analysis or system design, or later during coding.E�ective error tracing, also known as the \discoverytask" [10], requires that software artifacts are interre-lated among themselves as well as to informal customerrequirements.Software traceability is therefore the creation, manage-ment, and maintenance of relations from one softwareentity to other entities [9]. Software development en-vironments, including, among others, Marvel/Oz [19],Merlin [20], and Arcadia [21], support software trace-ability by means of tool integration, object managementsystems, and hypertext capabilities. For a large net-work of software artifacts and relations, however, trace-ability is still hampered by the cognitive di�culty ofsifting through large volumes of interrelated informa-tion. Software engineers are likely to get disoriented inlarge software spaces due to uncertainties encounteredduring navigation, such as \Where am I?", \How did Iget here?", and \Where can I go next?" [36, 34]. Thisdi�culty is akin to the hypertext-navigation problemknown as \lost in hyperspace" [28].We conclude that explicit modeling of uncertainty isrelevant and applicable to many software engineeringsituations and may help ameliorate practical problems,such as e�ective navigation in large software spaces.MODELING UNCERTAINTYWe suggest that uncertainties associated with one ormore properties of software artifacts be modeled andmaintained explicitly. A network of software artifacts,annotated with uncertainty values, can then, for exam-ple, be navigated more e�ectively by guiding the soft-ware engineer to artifacts that are more likely to exhibita particular property. We now describe the Bayesianapproach to uncertainty modeling.Bayesian Belief NetworksBayesian belief networks have been used in arti�cial

intelligence research to provide a framework for rea-soning under uncertainty [29, 27]. Bayesian networkshave been used extensively in a wide range of applica-tions [18]. Speci�cally, the Bayesian approach has beenapplied successfully to large text and hypertext searchdatabases in the domain of information retrieval [11, 7]and to validation of ultrahigh dependability for safety-critical systems [23].Informally, a Bayesian network is a graphical represen-tation of probability relationships among random vari-ables. A Bayesian network is a Directed Acyclic Graph(DAG), where graph nodes represent variables with do-mains of discrete, mutually exclusive values. In thefollowing, we use \nodes" when discussing structuralaspects of Bayesian networks and \variables" when dis-cussing probabilities. Directed edges between nodes rep-resent causal in
uence. Each edge has an associated ma-trix of probabilities to indicate beliefs in how each valueof the cause (i.e., parent) variable a�ects the probabilityof each value of the e�ect (i.e., child) variable.The structure of a Bayesian network is de�ned for-mally as a triplet (N;E; P), where N is a set of nodes,E � N �N a set of edges, and P a set of probabilities.Each node in N is labeled by a random random variablevi, where 1 � i � jN j. Each variable vi takes on a valuefroma discrete domain and is assigned a vector of proba-bilities, labeled Belief(vi) or Bel(vi). Each probabilityin Bel(vi) represents belief that vi will take on a partic-ular value. D = (N;E) is a DAG such that a directededge e =< si; ti >2 E indicates causal in
uence fromfrom source node si to target node ti. For each nodeti, the strengths of causal in
uences from its parent siare quanti�ed by a conditional probability distributionp(tijsi), speci�ed in an m � n edge matrix, where m isthe number of discrete values possible for ti and n is thenumber of values for si.The structure of a Bayesian network is usually de-termined by consultation with experts. Probabilitiesin edge matrices can either be estimated by expertsor compiled from statistical studies. An importantassumption of Bayesian networks is variable indepen-dence: a variable is independent (in the probabilisticsense) of all other non-descendant variables in the net-work except its parents.Bayesian updating occurs whenever new evidence ar-rives. Here, we follow Pearl's original updating algo-rithm [29], based on a message passing model, whereprobability vectors are sent as messages between net-work nodes. Bayesian updating proceeds by repeatedlysending messages, both \up" the network from a childnode to its parent and \down" the network from a par-ent node to its child, until all nodes are visited and theirbelief values, if needed, revised. This updating scheme

www.manaraa.com

supports distributed implementation, since each nodecan execute in a separate execution thread and be up-dated by way of message passing.Pearl's updating algorithm requires that two additionalvectors, labeled � and �, be used. � vectors are used tosend messages up the network, from a child node to itsparent. � values are typically set to one initially 4, be-fore any evidence is propagated, but are later revised tore
ect new evidence. When new evidence is observed,for example, if \test suite T detected a defect in codeunit M ," then the corresponding � vector is revised to(10) or (01) as appropriate. Revised � values are sent as amessage up to the revised node's parent and multipliedby the edge matrix. The resulting vector is multipliedby the parent node's � vector to yield a new �. This up-ward propagation repeats until the network's root nodeis reached. Similarly, downward propagation proceedsby means of messages, indicated by � vectors, sent froma parent node to its child, until belief values for all net-work nodes are updated.Bayesian updating of an arbitrary network (i.e., wherecycles may exist in the underlying undirected graph) isknown to be NP{hard [6], but if the network is tree-structured 5, Pearl's updating algorithm is quadratic inthe number of values per node and linear in the num-ber of children per parent. For a more comprehensivedescription of Pearl's updating algorithm, see [29, 27].Why Bayesian Networks?We identify compelling reasons for using Bayesian net-works for modeling uncertainty in software engineering.First, it is a mechanism to apply UPSE in practice,i.e., Bayesian networks provide a mathematically soundtechnique for explicit modeling of uncertainties inher-ent in software development. Moreover, their graphstructure matches that of software systems. Thus, itis possible to impose a Bayesian network on a softwaresystem by associating belief values with artifacts andconditional probability matrices with relations. Notethat the notion of Bayesian belief corresponds to ourearlier notion of degree of con�dence. In the following,we use \belief" speci�cally to refer to a Bayesian value,whereas \con�dence" is used more generally to indicatesubjective assessment of a software entity. In addition,since more than one belief value may be associated witha single software entity, multiple Bayesian networks canbe imposed on a single software system.Also, a software development process is highly dynamicin that software artifacts, relations, and associated be-liefs are modi�ed frequently. Bayesian networks are4UnlikeBelief and � vectors, values in the � vector do not needto sum to one.5In this paper, we limit our discussion to tree-structured soft-ware networks. Bayesian updating algorithms for general DAGsexist, however, and are polynomial in time and space.

able to re
ect dynamic changes in a software system bymeans of Bayesian updating. Furthermore, one's beliefsin software artifacts are typically in
uenced by manyfactors. This is easily accommodated in Bayesian net-works since evidence from multiple sources can be com-bined to determine the probability that a variable has acertain value. Finally, we believe that by using Bayesiannetworks one can address real problems of software en-gineering, including, among others, e�ective navigationof large software spaces, deciding when to stop testing,and identifying bottlenecks and high-risk components.Our choice of Bayesian networks, however justi�ed, doesnot imply that other uncertainty-modeling techniquesshould not be considered. Rather additional investi-gation of other approaches is required in order to studytheir possible uses and compare their relative merits ver-sus the Bayesian approach.THE ELEVATOR SYSTEM EXAMPLEAs part of a large e�ort to demonstrate integration ca-pabilities of the Arcadia research project [21], we havedeveloped a complete software solution for an elevatorcontrol system. The elevator system is a classic prob-lem that has been used to demonstrate software engi-neering techniques in general and speci�cally in the areaof formal speci�cation languages [32, 31]. The elevatorsystem is required to control n elevators in a buildingwith m
oors. The problem concerns the logic requiredto move elevators between
oors according to speci�edfunctional requirements as well as safety, liveness, andfairness constraints.Software artifacts in our elevator system solution in-clude a functional decomposition of requirements, de-veloped using REBUS; formal requirements speci�ca-tions, including model-based speci�cations in Z and in-terval logic speci�cations using both RTIL and the GILtoolset; object-oriented design diagrams, using SoftwareThrough Pictures' OOSD/Ada notation; code modulesimplemented in Ada; and test suites, test criteria, andtest oracles, developed using TAOS [30].Software artifacts in the elevator system are interrelatedby means of artifact relationships, as follows: Ada codeunits are related to OOSD design speci�cation elements;design speci�cations are related to requirements speci-�cations; requirements speci�cations are related to testsuites and test oracles that are used to ensure that thesystem meets speci�ed requirements; test suites are re-lated to code units that are to be tested against the re-quirements; and test criteria, used to determine whetherthe code is adequately tested, are related to code unitsand test suites.We applied the Bayesian approach to the elevator sys-tem solution. Software artifacts and relations were as-signed probability values that were determined by con-

www.manaraa.com

sultation with a domain expert. Though we have as-signed belief values and carried out Bayesian updatingfor the entire elevator system, space does not allow forthe complete example to be shown. Instead, for clar-ity and brevity, we demonstrate the Bayesian approachfor a partial unit test scenario that is modeled by asubnetwork of only four elevator-system artifacts. Thecomplete elevator example can be found in [37].The Unit Test ScenarioIn the unit test scenario, a software entity is consideredvalid if it is traceable to original customer requirementsand meets customer needs and expectations (cf. [15]).Note that absolute con�dence in an entity's validity ishard to achieve in practice. Instead, we associate aprobabilistic belief value with the statement \this en-tity is valid," and assign those belief values to systementities accordingly.In the unit test scenario, design node D represents anOOSD design speci�cation element, for example, Ele-vator Controller Interface Spec. A probability value isassociated with D, representing prior belief that D isvalid. Similarly, module M represents an Ada codeunit, for example, Elevator Controller Package, and isassigned a probability value representing prior beliefthat M is valid. Since M implements D, there existsa causal relationship between M and D, indicated by adirected edge in the network of Figure 1.In addition, test nodes T1 and T2 represent two testsuites, corresponding to two di�erent test selection cri-teria, for example, All{Edges and All{Uses. Test suitesare executed against code units in the system's imple-mentation and may succeed or fail. Test suite executionis successful when no defects are detected, i.e., actualtest results match expected results. Expected resultsfor test result checking are provided either manually orby a test oracle. Here, a code module is considered in-valid if a single defect is detected 6, i.e., if execution ofany related test suite fails, which, correspondingly, setsits belief value to zero. Note, however, that successfultest suite execution does not set the corresponding mod-ule's belief value to one, since it does not instill completecon�dence. Rather, con�dence that M is valid merelyincreases with each successful test suite execution. Thisis con�rmed by the results of Bayesian updating in theunit test scenario, reported below.The software network of Figure 1 provides a computa-tional framework for updating beliefs in the validity ofentities. In particular, success or failure of test suiteexecution constitutes new evidence that is then propa-gated throughout the network to revise previous beliefs.The initial state of the network, described next, includesprior beliefs in network nodes, as determined by consul-6Alternate de�nitions of validity are discussed later.

tation with a domain expert.Initial State of Bayesian NetworkWe begin with design node D. Con�dence in the va-lidity of design speci�cations varies considerably amongdi�erent projects, di�erent design methods, and di�er-ent designers. In the unit test scenario, D's prior beliefvalue is determined to be :7. This is recorded in D'sbelief vector, as follows:Bel(D) = � Bel(D = valid)Bel(D = invalid) � = � :7:3 �As shown in Figure 1, a � vector, used later for down-ward propagation, is also associated with D. Since newevidence is yet to be propagated, D's � values are ini-tially set to the same values as Bel(D). Similarly, sinceno propagation has occurred yet, D's � values are allset to 1.A directed edge from D to M indicated that M imple-mentsD. Conditional probabilities in the correspondingedge matrix represent beliefs thatM is valid (or invalid)given that D is valid (or invalid). These probabilitiesare determined by a domain expert as follows: if D isvalid, then M is also valid with :6 probability. Theprobability that M is invalid is, or course, :4. If D isinvalid, however, then M is valid with only :1 probabil-ity and invalid with :9 probability. These probabilitiesare recorded in the edge matrix between D and M , asshown in Figure 1.Next, we compute our belief that M is valid by way ofdownward propagation. This is accomplished by com-puting a � vector for M by multiplying D's � vector(the downward message) by the transpose of the edgematrix between D and M . The resulting � values areassigned to Bel(M) and indicate initial belief of 45% inM 's validity. This is shown below and in Figure 1.Bel(M) = � :6 :4:1 :9 �T � :7:3 � = � :45:55 �Test suite T1 represents All{Edges, a relatively weaktesting criterion in the subsumption hierarchy of [5]).Table 1 associates a con�dence level of :15 with thedefect-detection ability of All{Edges. We therefore de-termine the following probabilities for the edge matrixbetween M and T1: if M is invalid, then T1 succeeds(i.e., executes successfully) with :85 probability. Cor-respondingly, T1 fails with :15 probability. If M isvalid, then T1 always succeeds. Similarly, test suite T2represents All{Uses, a stronger testing criterion. Ta-ble 1 associates a con�dence level of :45 with the defect-detection ability of All{Uses. This again determines thecorresponding edge-matrix probabilities to be :45 and:55, respectively. The resulting edge matrices are shown

www.manaraa.com

in Figure 1. Next, belief values for T1 and T2 are com-puted, as before, by means of downward propagation. �values for T1 and T2 are computed by multiplying edge-matrix probabilities by a � message from M . Figure 1shows the resulting belief values for T1 and T2.Network State After Executing T1Figure 2 illustrates the e�ects on the network of suc-cessful execution of test suite T1. Bayesian updatingproceeds by means of sending � and � messages up anddown the network, as follows: T1's � vector is revisedto (10); T1 sends (10) as a � message to M , where it ismultiplied by the edge matrix; the resulting vector isthen multiplied by M 's current � vector, yielding M 'snew �. Next, M 's Belief vector is revised by multiply-ing the current Belief vector by the new �, yielding arevised belief value of :49 thatM is valid. M then sendsa � message to its parent D, which is used to revise D's� and Belief vectors, as before. The revised belief thatD is valid is :72. Finally, M also sends a � message toT2, where the � values are identical to M 's new beliefvalues. T2 then recomputes its own � and belief vectors.Network State After Executing T2Next we consider the e�ects on the network of executingthe stronger test suite T2 (All-Uses). Whether T2 suc-ceeds or fails, belief values in the network are updatedby means of propagation and re-computation of � and� values. If T2 were to fail, a defect has been detectedand M is recognized as invalid. Speci�cally, T2's � vec-tor is set to (01) upon failure, and, after multiplicationby the edge matrix, updates M 's � and belief vectors toalso be (01). Additional upward propagation from M toD results in a decrease in our belief in the validity of D.But, if T2 succeeds, then M 's belief value increases to96.5%, and our belief that D is valid increases to 97%.DISCUSSIONThe application of a Bayesian or other probabilistic ap-proach to software systems raises some issues and con-cerns. Among those we discuss issues deemed most per-tinent to this paper (in no particular order).How are belief values interpreted?In most applications of Bayesian networks (cf. [18]), be-lief values are associated with observable phenomena,described using binary True/False statements. Whenmodeling everyday situations, for example, the prior be-lief value of the statement \It is sunny" may be deter-mined to be :9, while the belief value of the statement\The dog is barking" may be :55 [4]. Each statement cantherefore be viewed as an observation on some entity'sstate, quality or property. Thus, values in a Bayesiannetwork represent beliefs that an entity is in some stateor possesses some quality or property.Similarly, a single belief value associated with a singlesoftware artifact represents belief that the artifact is in

some state or possesses some quality or property. In theunit test scenario, for example, the observed quality fordesign and code nodes is validity, whereas a test for thedesign node and code unit is quality, whereas a test suitecan be in one of two states, \success" or \failure." Ingeneral, however, software artifacts may possess manydi�erent qualities, for example, correctness, robustness,reliability, safety, maintainability, and e�ciency. Theycan also be in one of many di�erent states. This impliesthat multiple Bayesian models may be associated with asingle software network. It also implies that assignmentof belief values to artifact qualities must be consistentwith causal relationships in the network. In the unittest scenario, for example, test suites are used to testthe validity of code units, and therefore the observedquality is validity.When does a belief value become zero?The elevator example demonstrates that belief valuesmay be set to zero under certain conditions. A beliefvalue of zero may have signi�cant implications for otherbelief values because of Bayesian updating. Determin-ing whether a belief value should be zero is thereforeimportant as well as potentially di�cult. This decisionis in
uenced, for each belief value, by the quality of theassociated entity.Assume, for example, that a Bayesian value representsbelief that a source code unit is \bug free" or otherwisecorrect with respect to speci�ed requirements. In thiscase, the failure of a single test suite must cause thebelief value to be set to zero (as in the unit test scenarioabove). It is also conceivable, however, that test oraclesused for test result checking are themselves suspect. Inthis case, one has only limited con�dence in the testingprocess itself, and, consequently, failed execution of atest suite does not imply a belief value of zero.Assume a di�erent scenario where a complex softwaresystem includes many modules and is developed understringent schedule constraints. Here, it might be ac-ceptable for code units to contain known defects givencertain project considerations, including, for example,\How many defects were detected in the module?",\What kind of defects were detected?", \How costlyis defect elimination during development?", and \Howcostly would this defect be if it caused operational fail-ure?". In this case, uncertainty is modeled for a qual-ity other than program correctness, say \acceptability."Belief values for program acceptability should decreasewith each failed execution of a test suite, but do not nec-essarily become zero upon single failure. Belief shouldonly become zero when, for example, a preset threshold(e.g., maximumnumber of defects allowed) is exceeded.Where do belief values come from?To use Bayesian networks, one must specify prior belief

www.manaraa.com

values for network nodes as well as conditional proba-bilities for causal in
uences. Certain independence as-sumptions hold, as mentioned earlier, among variablesin a Bayesian network, implying that relatively few be-lief values need be speci�ed for each node, since theydepend exclusively on its parents' belief values [4]. Thequestion still remains, however, how to obtain belief val-ues initially, discussed next.Ideally, prior belief values are determined by collectingempirical, historical or statistical data. This is possiblein software projects that collect data on, for example,program bottlenecks and defect rates. Empirical datamay also be available for development tasks, includingrequirements analysis, design, coding and testing. Forexample, empirical data regarding coverage adequacy ofdi�erent testing criteria may be used to revisit the beliefvalues in Table 1.The ideal case, however, is seldom feasible. Instead,Bayesian belief values are usually elicited from a domainexpert who subjectively assesses them. Domain expertsinclude, for example, project managers, lead program-mers, senior designers, test researchers for test-strategye�ectiveness, and so on. Note that domain experts areused primarily to determine prior belief values; subse-quent changes to belief values in the network are causedby new evidence by way of Bayesian updating.CONCLUSIONS AND FUTURE WORKThe Uncertainty Principle in Software Engineering(UPSE) states that uncertainty is inherent and in-evitable in software development processes and prod-ucts. UPSE is a general and abstract statement aboutthe nature of software development. To demonstrateUPSE, we have chosen a probabilistic Bayesian ap-proach to uncertainty modeling and applied it to a sim-ple software network based on an elevator system. TheBayesian approach a�ords dynamic updating of beliefsduring software development. We have discussed someconcerns and implications of the Bayesian approach forsoftware engineering situations.We believe that much more stands to be gained by ex-plicit modeling of uncertainty in software engineering.In this paper, we have merely posited UPSE and demon-strated its applicability, using the Bayesian approach asa point example. In the remaining paragraphs, we dis-cuss additional uses and future research directions foruncertainty modeling.Monitoring the testing processAn important question in software testing is \How muchtesting is enough?". This question may be addressed byexplicit modeling of uncertainty, if su�cient testing isde�ned in terms of levels of con�dence in select sys-tem entities, for example, its code modules. As testingprogresses, con�dence levels increase as long as test exe-

cution is successful. Testing is guided and monitored bycontinuous update and comparison of con�dence levelsagainst prede�ned thresholds. Testers are noti�ed andmay take appropriate action whenever thresholds areexceeded. This approach may be especially useful insafety-critical systems, where con�dence requirementsand constraints are often speci�ed numerically.Other software-engineering domainsIn this paper, we have focused on software testing un-certainties, but we believe that uncertainty could andshould also be modeled for other domains, includingsoftware reuse and re-engineering, requirements analysisand speci�cation, software design and coding.Other software qualitiesIn this paper, we have focused on validity, not correct-ness, as a software quality for which belief values are rep-resented. We believe, however, that uncertainty shouldbe modeled explicitly for many other software qualities,including correctness, reliability, fairness, safety, testa-bility, maintainability, and e�ciency. As mentioned ear-lier, qualities associated with entities must be consistentwith causal relationships such that the resulting networkis meaningful.Other uncertainty modeling techniquesIn this paper, we have used Bayesian networks to modeluncertainty in software development. Viable alter-natives to the Bayesian approach exist, however, in-cluding Certainty{Factor approaches, Dempster{Shaferapproaches, fuzzy logic, and default and monotoniclogic [33]. Relative merits and pitfalls of these tech-niques should be studied and evaluated against theBayesian approach in the context of software engineer-ing situations.Modeling uncertainty in software processIn this paper, we have demonstrated that uncertaintycan be modeled for both process (i.e., testing strate-gies) as well as product (i.e., artifact networks) aspectsof software development, with an emphasis on model-ing uncertainty in software products. With respect tomodeling uncertainty in software processes, we believethat software-process modeling formalismsmust be aug-mented to include uncertainty values; that an environ-ment for supporting de�nition and execution of pro-cess models should include capabilities for representa-tion and interpretation of belief values and should allowfor Bayesian updating of those values; and that Bayesianupdating procedures must be carried out during processexecution, such that belief values and con�dence levelsare continuously updated as new evidence arrives.The provision and update of belief values may be greatlyenhanced in process frameworks that include processmeasurement capabilities. Such capabilities constitute arich source of information regarding the current state of

www.manaraa.com

various elements and support the collection of statisticaland empirical data that may signi�cantly improve theaccuracy of prior belief value estimation.We expect that by modeling software process uncertain-ties, one may achieve a more realistic representation ofthe process, enable automated belief revision by meansof Bayesian updating, and support prediction and guid-ance of future development activities.REFERENCES[1] M. Blum and H. Wasserman. Program result-checking: Atheory of testing meets a test of theory. In Proceedings ofthe 35th Annual Symposium on Foundations of ComputerScience, Santa Fe, NM, 1994. IEEE Computer Science Press.[2] F. P. Brooks. The Mythical Man-Month. Addison-Wesley,Reading, MA, 1975.[3] F. P. Brooks. No silver bullet: Essence and accidents ofsoftware engineering. IEEE Computer, 20(4):10{19, April1987.[4] E. Charniak. Bayesian networks without tears. AI Magazine,pages 50{63, Winter 1991.[5] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil.A formal evaluationof data
ow path selection criteria. IEEETransactions on Software Engineering, SE-15(11), Novem-ber 1989.[6] G. Cooper. Computational complexity of probabilistic infer-ence using bayesian belief networks (research note). Arti�cialIntelligence, 42:393{405, 1990.[7] B. W. Croft. Knowledge-based and statistical approaches totext retrieval. IEEE Expert, 8(2):8{12, April 1993.[8] A. M. Davis. 201 Principles of Software Development. Mc-Graw Hill, New York, New York, 1995.[9] A. M. Davis. Tracing: A simple necessity neglected. IEEESoftware, 12(5):6{7, September 1995.[10] P. T. Devanbu, R. J. Brachman, P. J. Selfridge, and B. W.Ballard. LaSSIE: a knowledge-based software informationsystem. Communications of the ACM, 34(5), May 1991.[11] M. E. Frisse. Searching for information in a hypertext medi-cal handbook. Communications of the ACM, 31(7):880{886,July 1988.[12] J. Gait. A debugger for concurrent programs. Software |Practice & Experience, 15(6):539{554, June 1985.[13] J. Gait. A probe e�ect in concurrent programs. Software |Practice & Experience, 16(3):225{233, March 1986.[14] H. Gall, R. Kl�osch, and R. Mittermeir. Object-orientedre-architecturing. In 5th European Software EngineeringConference (ESEC'95), pages 499{519, Barcelona, Spain,September 1995.[15] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals ofSoftware Engineering. Prentice-Hall, Inc., Englewood Cli�s,New Jersey, 1991.[16] A. L. Goel. Software reliability models: Assumptions, lim-itations, and applicability. IEEE Transactions on SoftwareEngineering, SE-11(12):1411{1423, 1985.[17] D. Hamlet. Predicting dependability by testing. In Pro-ceedings of the 1996 International Symposium on SoftwareTesting and Analysis (ISSTA), pages 84{91, San Diego, CA,January 1996. ACM Press.[18] D. Heckerman, A. Mamdani, andM. P. Wellman. Real-worldapplications of bayesian networks. Communications of theACM, 38(3), March 1995.

[19] G. T. Heineman, G. E. Kaiser, N. S. Barghuoti, and I. Z.Ben-Shaul. Rule chaining in Marvel: dynamic binding ofparameters. IEEE Expert, 7(6):26{33, December 1992.[20] G. Junkermann, B. Peuschel, W. Sch�afer, and S. Wolf.MERLIN: Supporting Cooperation in Software DevelopmentThrough a Knowledge-Based Environment, chapter 5, pages103{129. Wiley & Sons, England, 1994.[21] R. Kadia. Issues encountered in building a
exible softwaredevelopment environment: Lessons learned from the Arca-dia project. In Proceedings of ACM SIGSOFT '92: FifthSymposium on Software Development Environments, pages169{180, December 1992.[22] N. G. Leveson and C. S. Turner. An investigation of theTherac-25 accidents. IEEE Computer, 26(7):18{41, July1993.[23] B. Littlewood and L. Strigini. Validation of ultrahigh de-pendability for software-based systems. Communications ofthe ACM, 36(11), November 1993.[24] C. E. McDowell and D. P. Helmbold. Debugging concurrentprograms. ACM Computing Surveys, 21(4):593{622, Decem-ber 1989.[25] R. T. Mittermeir and L. G. Wur
. Composing software frompartially �tting components. In IPMU'96, pages 1121{1127,Granada, Spain, July 1996.[26] P. Naur, B. Randell, and J. N. Buxton, editors. SoftwareEngineering: Concepts and Techniques: Proceedings of theNATO Conferences. Petrocelli-Charter, New York, NewYork, 1976.[27] R. E. Neapolitan. Probabilistic reasoning in expert systems:theory and algorithms. Wiley, New York, New York, 1990.[28] J. Nielsen. Multimedia and Hypertext : the Internet andbeyond. AP Professional, Boston, MA, 1995.[29] J. Pearl. Probabilistic reasoning in intelligent systems: Net-works of plausible inference. Morgan Kaufmann Publishers,San Mateo, CA, 1988.[30] D. J. Richardson. TAOS: Testing with analysis and ora-cle support. In Proceedings of the 1994 International Sym-posium on Software Testing and Analysis (ISSTA), pages138{153, Seattle, August 1994. ACM Press.[31] D. J. Richardson, S. L. Aha, and T. O. O'Malley.Speci�cation-based test oracles for reactive systems. InProceedings of the Fourteenth International Conference onSoftware Engineering, pages 105{118, Melbourne, Australia,May 1992.[32] S. R. Schach. Classical and Object-Oriented Software Engi-neering. Irwin, Chicago, Illinois, 1996.[33] M. Ste�k. Introduction to Knowledge Systems. MorganKaufmann, San Francisco, CA, 1995.[34] D. Steinberg and H. Ziv. Software Visualization andYosemite National Park. In Proceedings of the Twenty-Fifth Annual Hawaii International Conference on SystemSciences, January 1992.[35] H. Ziv, R. Kl�osch, and D. J. Richardson. Software re-architecting in the presence of partial documentation. Tech-nical Report UCI-TR-96-30, University of California, Irvine,August 1996.[36] H. Ziv and L. J. Osterweil. Research issues in the intersec-tion of hypertextand software development environments. InR. N. Taylor and J. Coutaz, editors, Software Engineeringand Human-Computer Interaction, volume 896 of LectureNotes in Computer Science, pages 268{279. Springer-Verlag,Berlin Heidelberg, 1995.[37] H. Ziv, D. J. Richardson, and R. Kl�osch. The uncertaintyprinciple in software engineering. Technical Report UCI-TR-96-33, University of California, Irvine, August 1996.

www.manaraa.com

D (design node)� = � :7:3 �� = � 11 � Belief = � :7:3 �M (code module)� = � :6 :4:1 :9 �T � :7:3 � = � :45:55 �� = � 11 � Belief = � :45:55 �T1 (All-Edges test suite)� = � 1 0:85 :15 �T � :45:55 � = � :9175:0825�� = � 11 � Belief = � :9175:0825� T2 (All-Uses test suite)� = � 1 0:55 :45 �T � :45:55 � = � :7525:2475�� = � 11 � Belief = � :7525:2475 �
� :6 :4:1 :9 �Mval. inv.val.inv.D � = � :7:3 �� 1 0:85 :15 �T1suc. failval.inv.M � = � :45:55 � � 1 0:55 :45 �T2suc. failval.inv.M� = � :45:55 �Figure 1: Initial Belief Network for Unit Test ScenarioD (design node)� = � :7:3 �� = � :94:865 � Belief = � :72:28 �M (code module)� = � :6 :4:1 :9 �T � :72:28 � = � :49:51 �� = � 1:85 � Belief = � :49:51 �T1 (All-Edges test suite)� = � 1 0:85 :15 �T � :45:55 � = � :9175:0825�� = � 10 � Belief = � 10 � T2 (All-Uses test suite)� = � 1 0:55 :45 �T � :49:51 � = � :7705:2295�� = � 11 � Belief = � :7705:2295 �
� :6 :4:1 :9 �Mval. inv.val.inv.D � = � 1:85 �� 1 0:85 :15 �T1suc. failval.inv.M � = � 10 � � 1 0:55 :45 �T2suc. failval.inv.M� = � :49:51 �Figure 2: Revised Belief Network After Execution of T1

