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Abstract

This paper makes two contributions to software engi-
neering research. First, we observe that uncertainty
permeates software development but is rarely captured
explicitly in software models. We remedy this situation
by presenting the Uncertainty Principle in Software En-
gineering (UPSE), which states that uncertainty is in-
herent and inevitable in software development processes
and products. We substantiate UPSE by providing ex-
amples of uncertainty in select software engineering do-
mains. We present three common sources of uncertainty
in software development, namely human participation,
concurrency, and problem-domain uncertainties. We ex-
plore in detail uncertainty in software testing, includ-
ing test planning, test enactment, error tracing, and
quality estimation. Second, we present a technique for
modeling uncertainty, called Bayesian belief networks,
and justify its applicability to software systems. We ap-
ply the Bayesian approach to a simple network of soft-
ware artifacts based on an elevator control system. We
discuss results, implications and potential benefits of
the Bayesian approach. The elevator system therefore
serves as an example of applying UPSE to a particular
software development situation. Finally we discuss ad-
ditional aspects of modeling and managing uncertainty
in software engineering in general.
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INTRODUCTION

Today’s software engineer is expected to develop, main-
tain and comprehend software systems of unprecedented
size and complexity. The complexity of software sys-
tems and their development processes is known to be
intrinsic and essential [3]. Substantial efforts in soft-
ware engineering research attempt to improve software
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quality and developer productivity in the presence of
complexity. We contend that attempts to alleviate soft-
ware complexity are often impeded by the uncertainty
permeating virtually every aspect of software develop-
ment. In subsequent sections, we provide supporting
evidence for our claim. First, examples of uncertainty
in select domains of software development are presented,
followed by a discussion of three common sources of un-
certainty in software engineering. We then present the
Uncertainty Principle in Software Engineering (UPSE),
followed by more detailed expositions of uncertainty in
software testing, including test planning, test enact-
ment, error tracing, and quality estimation. We de-
scribe a specific technique for modeling and manage-
ment of uncertainty, known as Bayesian belief networks
or simply Bayesian nets. We demonstrate the use of
Bayesian nets for a simple network of software artifacts
and relations based on an elevator control system. We
conclude with a discussion of issues and concerns in
uncertainty modeling, both specifically using Bayesian
nets as well as in general.

We wish to note that uncertainty abounds in many as-
pects of software development, as well as in other engi-
neering disciplines and in everyday situations (For un-
certainty in everyday situations, see, for example, [33],
pp. 460.). A detailed exposition of uncertainty in gen-
eral is therefore beyond the scope of this paper. We
hope that UPSE nevertheless identifies an opportunity
for future investigations and provides a solid founda-
tion for broader discussions of uncertainty modeling in
software engineering. We encourage the reader to con-
sider occurrences and influences of uncertainty in her
own domains of interest and expertise.

Uncertainty in Software Engineering Domains
Here, we present four select domains of software engi-
neering where uncertainty is evident. Later, we discuss
uncertainty in software testing in greater detail. For
each domain, we include questions that arise frequently
and indicate potential uncertainties. These questions
often require answers of degree as opposed to binary
yea or nay. Later, we show that these questions may be
addressed by means of probability values.
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Uncertainty in requirements analysis

Software requirements elicitation and analysis typically
include learning about the problem and problem do-
main, understanding the needs of potential users, and
understanding the constraints on the solution. Analysis
and specification of software requirements inevitably in-
troduces uncertainties, including: Who will be the real
system users? What are users’ needs and expectations?
How well is the problem domain understood? How rig-
orously, accurately and sufficiently are domain under-
standing and user needs and expectations captured in
the requirements specification document?

Uncertainty in the transition from system requirements
to design and code

Software development typically requires the system to
be represented at multiple levels of abstraction, in-
cluding, for example, requirements analysis models, de-
sign models, and source code implementations. Tran-
sitioning between different levels of abstraction, how-
ever smooth, often introduces uncertainties, including:
How well does the design model correspond to the re-
quirements analysis model? How well does the imple-
mentation correspond to the design? How many of the
specified requirements are indeed met?

Uncertainty in software re-engineering

Software re-engineering includes reverse engineering of
an existing system into higher-level architectural de-
scriptions, followed by forward engineering of a revised
system implementation. Thus, in addition to forward-
engineering uncertainties, software re-engineering also
includes the following uncertainties: How well does
available system documentation correspond to program
source code? How accurately do models that were
reverse-engineered from program source code represent
domain abstractions [14]7 To what degree can original
system documentation be used in the reverse engineer-
ing process [35]7

Uncertainty in software reuse

Reuse of software components (for example, classes, pat-
terns and frameworks of object-oriented systems) intro-
duces several uncertainties, including: How to specify
the interface of a reusable component completely and
sufficiently? What is one’s confidence that an exist-
ing (i.e., available for reuse) component meets one’s us-
age needs? Given a reusable component, how can it
be tailored to existing project constraints and assump-
tions? Additional uncertainties have been identified in
the composition of reusable components [25].

Sources of Uncertainty in Software Engineering
Uncertainty occurs in software engineering for different
reasons and stems from multiple sources. Three exam-
ple sources of uncertainty are described below.

Uncertainty in the problem domain

A software system typically includes one or more mod-
els of the “real world” domain in which it operates. The
real world, however, is full of uncertainties, and there-
fore a system that models the real world inevitably re-
flects domain uncertainties. Domain uncertainties are
often only implied or simply ignored in the system’s do-
main model. This may lead to discrepancies between the
real world and system assumptions and actions, which
may in turn lead to risks and hazards. Also, in embed-
ded systems, there are uncertainties with respect to ex-
ternal software, hardware, and mechanical components.
Ignoring these uncertainties may be hazardous, possi-
bly even fatal '. Uncertainty also exists in the natural
and physical sciences. According to Heisenberg’s uncer-
tainty principle, for instance, the presence of an observer
may affect scientific observations such that absolute con-
fidence in observed results 1s not possible.

Uncertainty in the solution domain

Software systems constitute solutions to real world
problems. Software solutions may introduce additional
uncertainties above and beyond those attributed to the
problem domain. A known example of solution do-
main uncertainty, discussed next, occurs in concurrent-
program debugging. The key difficulty in debugging
concurrent programs is due to race conditions, which
introduce uncertainty, because erroneous program be-
havior observed in one execution may not be evident
in subsequent executions [24]. Moreover, any attempt
to “probe” the program for additional information, for
example by instrumenting it, may adversely affect the
probability of reproducing the erroneous behavior. This
is often referred to as the “probe effect” [12, 13] and is
closely related to Heisenberg’s uncertainty principle in
that by attempting to observe program behavior, the
probes may inadvertently affect the outcome of the ob-
servation. Consequently, this uncertainty has been re-
ferred to as “Heisenbugs” [24].

Human participation

The active role played by humans in virtually every
stage of the software lifecycle inevitably introduces un-
certainty and unpredictability into software develop-
ment. That software development 1s still largely human-
intensive may seem trivial, yet surprisingly few methods
exist that explicitly model the inexact and uncertain na-
ture of human involvement and 1ts consequences for soft-
ware processes and products. For example, rule-based
formalisms for software-process modeling, such as Mar-
vel/Oz [19] and Merlin [20], represent process steps and
process decisions as rules, but do not accommodate ex-
plicit modeling of uncertainty in those rules.

Leveson and Turner [22] report on the Therac incidents, where
software uncertainties were deemed impossible and therefore were
not considered by the manufacturer of a medical radiation device.
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Principles of Software Engineering

In 1968, the NATO conference held in Garmisch, Ger-
many [26] endorsed the claim that software construction
is similar to other engineering tasks and that software
development must therefore “be practiced like an engi-
neering discipline.” Engineers in classical engineering
disciplines are equipped with processes, methodologies,
standards, and tools that have been evolved, tested, and
proven successful. The use of standard procedures, ma-
terials, and building blocks limits the degrees of free-
dom and allows for engineering projects to proceed in
predictable, controllable, and manageable fashion.

At the foundation of classical engineering disciplines one
often finds a small set of underlying principles and laws
of nature that govern the behavior of systems and guide
their development. In the physical sciences, for instance,
one finds Newton’s laws of gravity, Einstein’s theory of
relativity, Kepler’s laws of planetary motion, Heisen-
berg’s uncertainty principle, and the laws of thermody-
namics. Laws and principles of the physical world are
usually discovered, not invented, by observing physical
systems. Such principles are confirmed and substanti-
ated by scientific experiments that are controllable and
repeatable and whose results are highly predictable.

In contrast, software systems appear unconstrained by
any laws or principles. It has long been recognized,
however, that software engineering would do well by a
standard set of procedures, guidelines and principles. A
recent book by Davis [8] documents 201 such principles.
Ghezzi et al [15] identify seven principles at the heart of
all software development activities. Brooks contributed
two key principles to software engineering knowledge,
namely “the mythical man-month” [2] and “no sliver

bullet” [3].

Software engineering principles should capture the na-
ture and behavior of software systems and guide their
development. Such principles would help in restricting
degrees of freedom in software development and achiev-
ing degrees of predictability and repeatability similar to
those of classical engineering disciplines. We observe
that in order for a principle of software engineering to
exhibit relevancy and applicability similar to other en-
gineering principles, it should be defined and presented
generally and abstractly, be applicable and instantiable
in practice to specific software development situations,
and be observed and substantiated repeatably and pre-
dictably.

One can confirm that software-engineering principles,
such as those recorded by Davis, Ghezzi, Brooks, and
others, indeed meet the three “principle criteria” defined
above. In this paper, we define and justify UPSE and
contend that it also meets the three principle criteria
above. We now proceed to define UPSE.

THE UNCERTAINTY PRINCIPLE IN SOFT-
WARE ENGINEERING

Software development is a complex human enterprise
carried out in problem domains and under circum-
stances that are often uncertain, vague, or otherwise
incomplete. Development must progress, however, in
the presence of those uncertainties. The Uncertainty
Principle in Software Engineering (UPSE) is therefore
stated as follows:

Uncertainty is inherent and inevitable in soft-
ware development processes and products.

UPSE is, like other principles of software engineering,
a general and abstract statement about the nature of
software development and is applicable throughout the
development lifecycle. The principle should still, how-
ever, be applied judiciously and appropriately. The next
section describes key issues and concerns that need to
be addressed when applying UPSE.

Applying UPSE

Software engineering processes and products include el-
ements of human participants (e.g., designers, testers),
information (e.g., design diagrams, test results), and
tasks (e.g., “design an object-oriented system model,”
or “execute regression test suite”). Uncertainty occurs
in most if not all of these elements. A software modeling
activity would therefore do well to apply UPSE by ex-
plicitly modeling one or more uncertainties, taking into
account the issues discussed below.

What is the goal of the modeling activity?

A model of a software process or product is an abstrac-
tion that ignores some detail. Software models are de-
veloped for different reasons and to meet different goals
and, consequently, may include different uncertainties.
If, for example, the goal of software modeling is to rep-
resent key system abstractions or artifact architecture,
then uncertainties regarding conceptual and architec-
tural decisions may need to be represented explicitly.
Alternatively, if a software process is modeled to facili-
tate project planning and prediction, then uncertainties
regarding schedule and budget estimates, progress mon-
itoring, and project risks may be modeled explicitly.

When ts uncertainty modeling relevant?

Despite the generality of UPSE, uncertainty-modeling is
not necessarily meaningful or equally applicable to all
aspects of a software-engineering effort. Consider, for
example, a requirements-change scenario where a new
feature is requested for an existing software system. The
challenging task of accommodating the new requirement
often necessitates substantial changes to system archi-
tecture and implementation, and therefore leads to un-
certainties. On the other hand, a simpler, automatable
task such as creating a new release version or updating
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system configuration information is less likely to intro-
duce uncertainty 2.

What notation, formalism, or approach is used for mod-
eling uncertainty?

Notations and techniques for modeling uncertainty,
vagueness, and fuzziness, have been studied extensively
in domains of artificial intelligence [33, 18]. Different ap-
proaches for modeling uncertainty have been advocated
based on different mathematical models as well as differ-
ent assumptions about the sources and nature of uncer-
tainty. A detailed exposition of current approaches to
uncertainty modeling is beyond the scope of this paper.
Instead, we focus on a particular uncertainty modeling
technique, called Bayesian belief networks.

UNCERTAINTY IN SOFTWARE TESTING
Software testing has been described as “the search for
discrepancies between what the software can do versus
what the user or the computing environment wants it
to do” [16]. We consider software testing broadly to
include test planning, test enactment, error tracing, and
quality estimation. We identify uncertainties associated
with each activity below.

Test Planning

We identify three aspects of test planning where un-
certainty is present: the artifacts under test, the test
activities planned, and the plans themselves.

Software systems under test include, among others, re-
quirements specifications, design representations, source
code modules, and the relationships among them. These
software artifacts are produced by requirements analy-
sis, architectural design, and coding processes, respec-
tively. Following UPSE, uncertainty permeates those
development processes and, consequently, the resulting
software artifacts. Plans to test them, therefore, will
carry these uncertainties forward.

Software testing, like other development activities, is
human intensive and thus introduces uncertainties.
These uncertainties may affect the development effort
and should therefore be accounted for in the test plan.
In particular, many testing activities, such as test re-
sult checking, are highly routine and repetitious and
thus are likely to be error-prone if done manually. This
again introduces uncertainties.

Test planning activities are carried out by humans at
an early stage of development, thereby introducing un-
certainties into the resulting test plan. Also, test plans
are likely to reflect uncertainties that are, as described
above, inherent in software artifacts and activities.

Test Enactment

2Note, however, that automatable operations that do not re-
quire human intervention are not necessarily free of uncertainties.

Test enactment includes test selection, test execution,
and test result checking. Test enactment is inherently
uncertain, since only exhaustive testing in an ideal en-
vironment guarantees absolute confidence in the testing
process and its results. This ideal testing scenario is
infeasible for all but the most trivial software systems.
Instead, multiple factors exist, discussed next, that in-
troduce uncertainties to test enactment activities.

Test selection is the activity of choosing a finite set of
elements (e.g., requirements, functions, paths, data) to
be tested out of a typically infinite number of elements.
Test selection is often based on an adequacy or coverage
criterion that is met by the elements selected for testing.
The fact that only a finite subset of elements is selected
inevitably introduces a degree of uncertainty regarding
whether all defects in the system can be detected. One
can therefore associate a probability value with a testing
criterion that represens one’s belief in its ability to de-
tect defects. An example of assigning confidence values
to path selection criteria is given below.

Test execution involves actual execution of system code
on some input data. Test execution may still include
uncertainties, however, as follows: the system under
test may be executing on a host environment that is
different from the target execution environment, which
in turn introduces uncertainty. In cases where the tar-
get environment i1s simulated on the host environment,
testing accuracy can only be as good as simulation accu-
racy. Furthermore, observation may affect testing accu-
racy with respect to timing, synchronization, and other
dynamic 1ssues. Finally, test executions may not accu-
rately reflect the operational profiles of real users or real
usage scenarios.

Test result checking is likely to be error-prone, inex-
act, and uncertain. Test result checking is afforded by
means of a test oracle, that is used for validating test
results against stated specifications. Test oracles can
be classified into five categories [31], listed in decreasing
order of uncertainty (or, alternatively, increasing order
of confidence), as follows: human oracles, input/output
oracles, regression test suites, validation test suites, and
specification-based oracles. Specification-based oracles
instill the highest confidence, but still include uncer-
tainty that stems from discrepancies between the specifi-
cation and customer’s informal needs and expectations.

We have modeled uncertainties in test oracles for an
extended system test scenario, but space does not per-
mit its inclusion in this paper. Instead, we provide two
smaller and simpler examples of modeling uncertainty
in software testing. The first example, described next,
is in the domain of path selection criteria.

Example: Path Selection Testing Criteria
Here, we add a measure of uncertainty to a previous
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result in comparison of data flow path selection testing
criteria. In [5], the authors present a subsumption hi-
erarchy that imposes a partial order on different data
flow path selection criteria with respect to their ability
to provide adequate coverage of a given program. The
subsumption relationship may be recast in terms of un-
certainty or degree of confidence, as follows: if criterion
A subsumes criterion B, then one has more confidence in
the defect-detection ability of A than that of B3. Con-
fidence in the defect-detection ability of a given testing
criterion may be quantified by means of a probability
“belief” value between 0 and 1. This is illustrated in
Table 1, which shows a plausible assignment of proba-
bilistic confidence values for a dozen path selection cri-
teria from [5]. Table 1 raises some important questions,
however, discussed next.

Path Selection Criterion | Confidence Value
All-Paths .6b

All-DU-Paths .59

Ordered Context Coverage+ .61
Context Coverage+ .55
Reach Coverage+ 45
All-Uses 45
All-C-Uses/Some-P-Uses .33
All-P-Uses/Some-C-Uses .33
All-Defs .25

All-P-Uses 2

All-Edges 15

All-Nodes q

Table 1: Confidence Values for Data Flow Path Selec-
tion Criterla

Why are confidence values relatively low?

Low confidence values imply that even a “strong” path
selection criterion does not incur high levels of confi-
dence. This is because path selection does not take into
account, for example, data value selection. Some de-
fects are only revealed by particular data values, but
not by others. Therefore, low confidence values reflect
the criteria’s inability to guarantee defect detection.

What are the constraints, if any, on the assignment of
confidence values?

The only constraint on assigning confidence values is
that if A subsumes B in the subsumption hierarchy
of [5], then A’s confidence value should be equal to or
higher than B’s. Thus, there are infinitely many pos-
sible assignments of confidence values that preserve the
partial subsumption order of path selection criteria.

3 As discussed in [5], even if A subsumes B, it is still uncertain
whether A is in fact better at detecting defects, since demonstrat-
ing the latter would require that empirical data be collected to
substantiate the graph theoretic proofs of subsumption.

How are confidence values determined?

Confidence values, such as shown in Table 1, are of-
ten determined by consultation with domain experts.
Other techniques exist, however, for establishing confi-
dence values, including: values computed using software
reliability or cost-estimation models; values obtained
from empirical, statistical, or historical data; or else val-
ues acquired dynamically during software-process exe-
cution. Some techniques and their implications are dis-
cussed further in subsequent sections.

How are confidence values used?

Confidence values may be useful, for example, for choos-
ing the most appropriate testing criterion given project
requirements and constraints. A safety-critical system,
for instance, may require that only testing criteria with
confidence levels in the ultrahigh region be used. In con-
trast, a commercial software product may may weigh
the cost and duration of testing against time-to-market
constraints. We propose that, in both cases, probabilis-
tic measures of confidence, for example, in the defect-
detection abilities of testing criteria, be employed in the
decision-making process.

Quality Estimation

Software testing is instrumental in establishing quality
and high assurance in software processes and products.
A key concern of software testing 1s “When to stop test-
ing?”, which is often answered by means of quality es-
timation. We consider reliability testing and reliability
growth modeling to be among the most mature tech-
niques for software quality assessment [23] and therefore
focus on them below.

Considerable work in software reliability modeling is
based on a probabilistic notion of uncertainty. A prob-
abilistic model of software behavior is needed since nei-
ther program testing nor formal proof of program cor-
rectness can guarantee complete confidence in the cor-
rectness of a program [16]. Software reliability measures
to what degree a software system behaves as expected,
thereby modeling system behavior as observed by its
users, as opposed to static or dynamic properties of the
code 1itself. Examples of measures used in software re-
liability include frequency of failure and mean time to
failure. Software reliability may therefore be defined
as the probability that software faults do not cause a
program failure during a specified exposure period in a
specified use environment [16].

Hamlet [17] and Littlewood [23] extend existing relia-
bility theory be defining “software dependability” as a
statistical measure of software quality. Hamlet incor-
porates Blum’s idea of self-checking/self-correcting pro-
grams [1] into reliability such that the dependability of
a program P at input X is defined as the confidence
probability that P is correct (with respect to its speci-
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fication) at X.

Software reliability models not only demonstrate that
uncertainty may be measured and represented explic-
itly but they can also be used to estimate future soft-
ware quality. Prediction of future reliability assumes
that software systems are used with statistical regular-
ity. This assumption, however, introduces uncertainty,
since future users may exhibit vastly different usage pat-
terns. We conclude that probabilistic measures of soft-
ware reliability can be used to provide initial estimates
of confidence levels in software artifacts and relations.
This is discussed in more detail in subsequent sections.

Error Tracing

When a software failure is detected, the source of the
error must be found. The error may have been intro-
duced at an early stage of development, such as require-
ments analysis or system design, or later during coding.
Effective error tracing, also known as the “discovery
task” [10], requires that software artifacts are interre-
lated among themselves as well as to informal customer
requirements.

Software traceability is therefore the creation, manage-
ment, and maintenance of relations from one software
entity to other entities [9]. Software development en-
vironments, including, among others, Marvel/Oz [19],
Merlin [20], and Arcadia [21], support software trace-
ability by means of tool integration, object management
systems, and hypertext capabilities. For a large net-
work of software artifacts and relations, however, trace-
ability is still hampered by the cognitive difficulty of
sifting through large volumes of interrelated informa-
tion. Software engineers are likely to get disoriented in
large software spaces due to uncertainties encountered
during navigation, such as “Where am 17”7, “How did 1
get here?”  and “Where can I go next?” [36, 34]. This
difficulty is akin to the hypertext-navigation problem
known as “lost in hyperspace” [28].

We conclude that explicit modeling of uncertainty is
relevant and applicable to many software engineering
situations and may help ameliorate practical problems,
such as effective navigation in large software spaces.

MODELING UNCERTAINTY

We suggest that uncertainties associated with one or
more properties of software artifacts be modeled and
maintained explicitly. A network of software artifacts,
annotated with uncertainty values, can then, for exam-
ple, be navigated more effectively by guiding the soft-
ware engineer to artifacts that are more likely to exhibit
a particular property. We now describe the Bayesian
approach to uncertainty modeling.

Bayesian Belief Networks
Bayesian belief networks have been used in artificial

intelligence research to provide a framework for rea-
soning under uncertainty [29, 27]. Bayesian networks
have been used extensively in a wide range of applica-
tions [18]. Specifically, the Bayesian approach has been
applied successfully to large text and hypertext search
databases in the domain of information retrieval [11, 7]
and to validation of ultrahigh dependability for safety-
critical systems [23].

Informally, a Bayesian network is a graphical represen-
tation of probability relationships among random vari-
ables. A Bayesian network is a Directed Acyclic Graph
(DAG), where graph nodes represent variables with do-
mains of discrete, mutually exclusive values. In the
following, we use “nodes” when discussing structural
aspects of Bayesian networks and “variables” when dis-
cussing probabilities. Directed edges between nodes rep-
resent causal influence. Each edge has an associated ma-
trix of probabilities to indicate beliefs in how each value
of the cause (i.e., parent) variable affects the probability
of each value of the effect (i.e., child) variable.

The structure of a Bayesian network is defined for-
mally as a triplet (N, B, P), where N is a set of nodes,
E C N x N aset of edges, and P a set of probabilities.
Each node in N is labeled by a random random variable
v;, where 1 < ¢ < |N|. Each variable v; takes on a value
from a discrete domain and is assigned a vector of proba-
bilities, labeled Belief(v;) or Bel(v;). Each probability
in Bel(v;) represents belief that v; will take on a partic-
ular value. D = (N, E) is a DAG such that a directed
edge e =< s;,t; >€ FE indicates causal influence from
from source node s; to target node ¢;. For each node
t;, the strengths of causal influences from its parent s;
are quantified by a conditional probability distribution
p(ti|si), specified in an m X n edge matrix, where m is
the number of discrete values possible for #; and n is the
number of values for s;.

The structure of a Bayesian network is usually de-
termined by consultation with experts. Probabilities
in edge matrices can either be estimated by experts
or compiled from statistical studies. An important
assumption of Bayesian networks is variable indepen-
dence: a variable is independent (in the probabilistic
sense) of all other non-descendant variables in the net-
work except its parents.

Bayesian updating occurs whenever new evidence ar-
rives. Here, we follow Pearl’s original updating algo-
rithm [29], based on a message passing model, where
probability vectors are sent as messages between net-
work nodes. Bayesian updating proceeds by repeatedly
sending messages, both “up” the network from a child
node to its parent and “down” the network from a par-
ent node to its child, until all nodes are visited and their
belief values, if needed, revised. This updating scheme
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supports distributed implementation, since each node
can execute 1n a separate execution thread and be up-
dated by way of message passing.

Pearl’s updating algorithm requires that two additional
vectors, labeled A and 7, be used. A vectors are used to
send messages up the network, from a child node to its
parent. X values are typically set to one initially 4, be-
fore any evidence is propagated, but are later revised to
reflect new evidence. When new evidence is observed,
for example, if “test suite T detected a defect in code
unit M,” then the corresponding A vector is revised to
() or (9) as appropriate. Revised A values are sent as a
message up to the revised node’s parent and multiplied
by the edge matrix. The resulting vector is multiplied
by the parent node’s A vector to yield a new A. This up-
ward propagation repeats until the network’s root node
is reached. Similarly, downward propagation proceeds
by means of messages, indicated by = vectors, sent from
a parent node to its child, until belief values for all net-
work nodes are updated.

Bayesian updating of an arbitrary network (i.e., where
cycles may exist in the underlying undirected graph) is
known to be NP-hard [6], but if the network is tree-
structured °, Pearl’s updating algorithm is quadratic in
the number of values per node and linear in the num-
ber of children per parent. For a more comprehensive
description of Pearl’s updating algorithm, see [29, 27].

Why Bayesian Networks?

We identify compelling reasons for using Bayesian net-
works for modeling uncertainty in software engineering.
First, it is a mechanism to apply UPSE in practice,
1.e., Bayesian networks provide a mathematically sound
technique for explicit modeling of uncertainties inher-
ent in software development. Moreover, their graph
structure matches that of software systems. Thus, it
is possible to impose a Bayesian network on a software
system by associating belief values with artifacts and
conditional probability matrices with relations. Note
that the notion of Bayesian belief corresponds to our
earlier notion of degree of confidence. In the following,
we use “belief” specifically to refer to a Bayesian value,
whereas “confidence” is used more generally to indicate
subjective assessment of a software entity. In addition,
since more than one belief value may be associated with
a single software entity, multiple Bayesian networks can
be imposed on a single software system.

Also, a software development process is highly dynamic
in that software artifacts, relations, and associated be-
liefs are modified frequently. Bayesian networks are

4Unlike Belief and 7 vectors, values in the ) vector do not need
to sum to one.

5In this paper, we limit our discussion to tree-structured soft-
ware networks. Bayesian updating algorithms for general DAGs
exist, however, and are polynomial in time and space.

able to reflect dynamic changes in a software system by
means of Bayesian updating. Furthermore, one’s beliefs
in software artifacts are typically influenced by many
factors. This is easily accommodated in Bayesian net-
works since evidence from multiple sources can be com-
bined to determine the probability that a variable has a
certain value. Finally, we believe that by using Bayesian
networks one can address real problems of software en-
gineering, including, among others, effective navigation
of large software spaces, deciding when to stop testing,
and 1dentifying bottlenecks and high-risk components.

Our choice of Bayesian networks, however justified, does
not imply that other uncertainty-modeling techniques
should not be considered. Rather additional investi-
gation of other approaches is required in order to study
their possible uses and compare their relative merits ver-
sus the Bayesian approach.

THE ELEVATOR SYSTEM EXAMPLE

As part of a large effort to demonstrate integration ca-
pabilities of the Arcadia research project [21], we have
developed a complete software solution for an elevator
control system. The elevator system is a classic prob-
lem that has been used to demonstrate software engi-
neering techniques in general and specifically in the area
of formal specification languages [32, 31]. The elevator
system is required to control n elevators in a building
with m floors. The problem concerns the logic required
to move elevators between floors according to specified
functional requirements as well as safety, liveness, and
fairness constraints.

Software artifacts in our elevator system solution in-
clude a functional decomposition of requirements, de-
veloped using REBUS; formal requirements specifica-
tions, including model-based specifications in Z and in-
terval logic specifications using both RTIL and the GIL
toolset; object-oriented design diagrams, using Software
Through Pictures’” OOSD/Ada notation; code modules
implemented in Ada; and test suites, test criteria, and
test oracles, developed using TAOS [30].

Software artifacts in the elevator system are interrelated
by means of artifact relationships, as follows: Ada code
units are related to OOSD design specification elements;
design specifications are related to requirements speci-
fications; requirements specifications are related to test
suites and test oracles that are used to ensure that the
system meets specified requirements; test suites are re-
lated to code units that are to be tested against the re-
quirements; and test criteria, used to determine whether
the code 1s adequately tested, are related to code units
and test suites.

We applied the Bayesian approach to the elevator sys-
tem solution. Software artifacts and relations were as-
signed probability values that were determined by con-
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sultation with a domain expert. Though we have as-
signed belief values and carried out Bayesian updating
for the entire elevator system, space does not allow for
the complete example to be shown. Instead, for clar-
ity and brevity, we demonstrate the Bayesian approach
for a partial unit test scenario that is modeled by a
subnetwork of only four elevator-system artifacts. The
complete elevator example can be found in [37].

The Unit Test Scenario

In the unit test scenario, a software entity is considered
valid if it is traceable to original customer requirements
and meets customer needs and expectations (cf. [15]).
Note that absolute confidence in an entity’s validity is
hard to achieve in practice. Instead, we associate a
probabilistic belief value with the statement “this en-
tity is valid,” and assign those belief values to system
entities accordingly.

In the unit test scenario, design node D represents an
OOSD design specification element, for example, Ele-
vator_Controller_Interface_Spec. A probability value is
associated with D, representing prior belief that D is
valid. Similarly, module M represents an Ada code
unit, for example, Elevator_Controller_Package, and is
assigned a probability value representing prior belief
that M is valid. Since M implements D, there exists
a causal relationship between M and D, indicated by a
directed edge in the network of Figure 1.

In addition, test nodes 711 and T2 represent two test
suites, corresponding to two different test selection cri-
teria, for example, All-Fdges and All-Uses. Test suites
are executed against code units in the system’s imple-
mentation and may succeed or fail. Test suite execution
1s successful when no defects are detected, i.e., actual
test results match expected results. Expected results
for test result checking are provided either manually or
by a test oracle. Here, a code module is considered in-
valid if a single defect is detected ©, i.e., if execution of
any related test suite fails, which, correspondingly, sets
its belief value to zero. Note, however, that successful
test suite execution does not set the corresponding mod-
ule’s belief value to one, since it does not instill complete
confidence. Rather, confidence that M is valid merely
increases with each successful test suite execution. This
is confirmed by the results of Bayesian updating in the
unit test scenario, reported below.

The software network of Figure 1 provides a computa-
tional framework for updating beliefs in the validity of
entities. In particular, success or failure of test suite
execution constitutes new evidence that is then propa-
gated throughout the network to revise previous beliefs.
The initial state of the network, described next, includes
prior beliefs in network nodes, as determined by consul-

6 Alternate definitions of validity are discussed later.

tation with a domain expert.

Initial State of Bayesian Network

We begin with design node D. Confidence in the va-
lidity of design specifications varies considerably among
different projects, different design methods, and differ-
ent designers. In the unit test scenario, D’s prior belief
value is determined to be .7. This is recorded in D’s
belief vector, as follows:

o) = (it = rtin )= ()

As shown in Figure 1, a 7@ vector, used later for down-
ward propagation, is also associated with D. Since new
evidence is yet to be propagated, D’s 7w values are ini-
tially set to the same values as Bel(D). Similarly, since
no propagation has occurred yet, D’s A values are all
set to 1.

A directed edge from D to M indicated that M imple-
ments DD. Conditional probabilities in the corresponding
edge matrix represent beliefs that M is valid (or invalid)
given that D is valid (or invalid). These probabilities
are determined by a domain expert as follows: if D is
valid, then M is also valid with .6 probability. The
probability that M is invalid is, or course, .4. If D is
invalid, however, then M is valid with only .1 probabil-
ity and invalid with .9 probability. These probabilities
are recorded in the edge matrix between DD and M, as
shown in Figure 1.

Next, we compute our belief that M is valid by way of
downward propagation. This is accomplished by com-
puting a 7 vector for M by multiplying D’s 7 vector
(the downward message) by the transpose of the edge
matrix between D and M. The resulting = values are
assigned to Bel(M) and indicate initial belief of 45% in
M’s validity. This is shown below and in Figure 1.

et = 3)T(§):<gg)

Test suite T'1 represents All-Edges, a relatively weak
testing criterion in the subsumption hierarchy of [5]).
Table 1 associates a confidence level of .15 with the
defect-detection ability of All-Fdges. We therefore de-
termine the following probabilities for the edge matrix
between M and T'1: if M is invalid, then 71 succeeds
(i.e., executes successfully) with .85 probability. Cor-
respondingly, 71 fails with .15 probability. If M is
valid, then T'1 always succeeds. Similarly, test suite 72
represents All-Uses, a stronger testing criterion. Ta-
ble 1 associates a confidence level of .45 with the defect-
detection ability of All-Uses. This again determines the
corresponding edge-matrix probabilities to be .45 and
.55, respectively. The resulting edge matrices are shown
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in Figure 1. Next, belief values for 7'1 and 72 are com-
puted, as before, by means of downward propagation. #
values for T'1 and T2 are computed by multiplying edge-
matrix probabilities by a 7 message from M. Figure 1
shows the resulting belief values for T'1 and 772.

Network State After Frecuting T'1

Figure 2 illustrates the effects on the network of suc-
cessful execution of test suite 7'1. Bayesian updating
proceeds by means of sending A and 7 messages up and
down the network, as follows: T'1’s A vector is revised
to (3); T'1 sends (}) as a A message to M, where it is
multiplied by the edge matrix; the resulting vector is
then multiplied by M’s current A vector, yielding M’s
new A. Next, M’s Belief vector is revised by multiply-
ing the current Belief vector by the new A, yielding a
revised belief value of .49 that M is valid. M then sends
a A message to its parent D, which is used to revise D’s
A and Belief vectors, as before. The revised belief that
D is valid 1s .72. Finally, M also sends a # message to
T2, where the m values are identical to M’s new belief
values. T'2 then recomputes its own 7 and belief vectors.

Network State After Executing T2

Next we consider the effects on the network of executing
the stronger test suite T2 (All-Uses). Whether T2 suc-
ceeds or fails, belief values in the network are updated
by means of propagation and re-computation of A and
7 values. If T2 were to fail, a defect has been detected
and M is recognized as invalid. Specifically, T2’s A vec-
tor is set to (9) upon failure, and, after multiplication
by the edge matrix, updates M’s A and belief vectors to
also be (). Additional upward propagation from M to
D results in a decrease in our belief in the validity of D.
But, if T2 succeeds, then M’s belief value increases to
96.5%, and our belief that D is valid increases to 97%.

DISCUSSION

The application of a Bayesian or other probabilistic ap-
proach to software systems raises some 1ssues and con-
cerns. Among those we discuss issues deemed most per-
tinent to this paper (in no particular order).

How are belief values interpreted?

In most applications of Bayesian networks (cf. [18]), be-
lief values are associated with observable phenomena,
described using binary True/False statements. When
modeling everyday situations, for example, the prior be-
lief value of the statement “It is sunny” may be deter-
mined to be .9, while the belief value of the statement
“The dog is barking” may be .55 [4]. Each statement can
therefore be viewed as an observation on some entity’s
state, quality or property. Thus, values in a Bayesian
network represent beliefs that an entity is in some state
or possesses some quality or property.

Similarly, a single belief value associated with a single
software artifact represents belief that the artifact is in

some state or possesses some quality or property. In the
unit test scenario, for example, the observed quality for
design and code nodes is validity, whereas a test for the
design node and code unit 1s quality, whereas a test suite
can be in one of two states, “success” or “failure.” In
general, however, software artifacts may possess many
different qualities, for example, correctness, robustness,
reliability, safety, maintainability, and efficiency. They
can also be in one of many different states. This implies
that multiple Bayesian models may be associated with a
single software network. It also implies that assignment
of belief values to artifact qualities must be consistent
with causal relationships in the network. In the unit
test scenario, for example, test suites are used to test
the validity of code units, and therefore the observed
quality is validity.

When does a belief value become zero?

The elevator example demonstrates that belief values
may be set to zero under certain conditions. A belief
value of zero may have significant implications for other
belief values because of Bayesian updating. Determin-
ing whether a belief value should be zero is therefore
important as well as potentially difficult. This decision
is influenced, for each belief value, by the quality of the
associated entity.

Assume, for example, that a Bayesian value represents
belief that a source code unit is “bug free” or otherwise
correct with respect to specified requirements. In this
case, the failure of a single test suite must cause the
belief value to be set to zero (as in the unit test scenario
above). Tt is also conceivable, however, that test oracles
used for test result checking are themselves suspect. In
this case, one has only limited confidence in the testing
process itself, and, consequently, failed execution of a
test suite does not imply a belief value of zero.

Assume a different scenario where a complex software
system includes many modules and is developed under
stringent schedule constraints. Here, it might be ac-
ceptable for code units to contain known defects given
certain project considerations, including, for example,
“How many defects were detected in the module?”,
“What kind of defects were detected?”, “How costly
is defect elimination during development?”, and “How
costly would this defect be if it caused operational fail-
ure?”. In this case, uncertainty is modeled for a qual-
ity other than program correctness, say “acceptability.”
Belief values for program acceptability should decrease
with each failed execution of a test suite, but do not nec-
essarily become zero upon single failure. Belief should
only become zero when, for example, a preset threshold
(e.g., maximum number of defects allowed) is exceeded.

Where do belief values come from?
To use Bayesian networks, one must specify prior belief
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values for network nodes as well as conditional proba-
bilities for causal influences. Certain independence as-
sumptions hold, as mentioned earlier, among variables
in a Bayesian network, implying that relatively few be-
lief values need be specified for each node, since they
depend exclusively on its parents’ belief values [4]. The
question still remains, however, how to obtain belief val-
ues initially, discussed next.

Ideally, prior belief values are determined by collecting
empirical, historical or statistical data. This is possible
in software projects that collect data on, for example,
program bottlenecks and defect rates. Empirical data
may also be available for development tasks, including
requirements analysis, design, coding and testing. For
example, empirical data regarding coverage adequacy of
different testing criteria may be used to revisit the belief
values in Table 1.

The ideal case, however, is seldom feasible. Instead,
Bayesian belief values are usually elicited from a domain
expert who subjectively assesses them. Domain experts
include, for example, project managers, lead program-
mers, senior designers, test researchers for test-strategy
effectiveness, and so on. Note that domain experts are
used primarily to determine prior belief values; subse-
quent changes to belief values in the network are caused
by new evidence by way of Bayesian updating.

CONCLUSIONS AND FUTURE WORK

The Uncertainty Principle in Software Engineering
(UPSE) states that uncertainty is inherent and in-
evitable in software development processes and prod-
ucts. UPSE is a general and abstract statement about
the nature of software development. To demonstrate
UPSE, we have chosen a probabilistic Bayesian ap-
proach to uncertainty modeling and applied it to a sim-
ple software network based on an elevator system. The
Bayesian approach affords dynamic updating of beliefs
during software development. We have discussed some
concerns and implications of the Bayesian approach for
software engineering situations.

We believe that much more stands to be gained by ex-
plicit modeling of uncertainty in software engineering.
In this paper, we have merely posited UPSE and demon-
strated its applicability, using the Bayesian approach as
a point example. In the remaining paragraphs, we dis-
cuss additional uses and future research directions for
uncertainty modeling.

Monitoring the testing process

An important question in software testing is “How much
testing is enough?”. This question may be addressed by
explicit modeling of uncertainty, if sufficient testing is
defined in terms of levels of confidence in select sys-
tem entities, for example, its code modules. As testing
progresses, confidence levels increase as long as test exe-

cution is successful. Testing is guided and monitored by
continuous update and comparison of confidence levels
against predefined thresholds. Testers are notified and
may take appropriate action whenever thresholds are
exceeded. This approach may be especially useful in
safety-critical systems, where confidence requirements
and constraints are often specified numerically.

Other software-engineering domains

In this paper, we have focused on software testing un-
certainties, but we believe that uncertainty could and
should also be modeled for other domains, including
software reuse and re-engineering, requirements analysis
and specification, software design and coding.

Other software qualities

In this paper, we have focused on validity, not correct-
ness, as a software quality for which belief values are rep-
resented. We believe, however, that uncertainty should
be modeled explicitly for many other software qualities,
including correctness, reliability, fairness, safety, testa-
bility, maintainability, and efficiency. As mentioned ear-
lier, qualities associated with entities must be consistent
with causal relationships such that the resulting network
1s meaningful.

Other uncertainty modeling techniques

In this paper, we have used Bayesian networks to model
uncertainty in software development. Viable alter-
natives to the Bayesian approach exist, however, in-
cluding Certainty—Factor approaches, Dempster—Shafer
approaches, fuzzy logic, and default and monotonic
logic [33]. Relative merits and pitfalls of these tech-
niques should be studied and evaluated against the
Bayesian approach in the context of software engineer-
ing situations.

Modeling uncertainty in software process

In this paper, we have demonstrated that uncertainty
can be modeled for both process (i.e., testing strate-
gies) as well as product (i.e., artifact networks) aspects
of software development, with an emphasis on model-
ing uncertainty in software products. With respect to
modeling uncertainty in software processes, we believe
that software-process modeling formalisms must be aug-
mented to include uncertainty values; that an environ-
ment for supporting definition and execution of pro-
cess models should include capabilities for representa-
tion and interpretation of belief values and should allow
for Bayesian updating of those values; and that Bayesian
updating procedures must be carried out during process
execution, such that belief values and confidence levels
are continuously updated as new evidence arrives.

The provision and update of belief values may be greatly
enhanced in process frameworks that include process
measurement capabilities. Such capabilities constitute a
rich source of information regarding the current state of
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various elements and support the collection of statistical
and empirical data that may significantly improve the
accuracy of prior belief value estimation.

We expect that by modeling software process uncertain-
ties, one may achieve a more realistic representation of
the process, enable automated belief revision by means
of Bayesian updating, and support prediction and guid-
ance of future development activities.
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Figure 1: Initial Belief Network for Unit Test Scenario
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Figure 2: Revised Belief Network After Execution of T'1
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